A Denotational Engineering of Programming Languages

Part 8: Total correctness of programs (Section 7.7 of the book)

> Andrzej Jacek Blikle May 21st, 2021

The repetition of weak total correctness

GENERAL (NONDETERMINISTIC) CASE

 $A \subseteq PB - \underline{weak \ total \ correctness}$ wrt <u>precondition</u> A and <u>postcondition</u> B

For every a : A, there is a execution of P that terminates in B (but there may be another one, that does not terminate in B or does not terminate at all)

DETERMINISTIC CASE $A \subseteq FB$ – For every a : A, F.a = ! and F.a : B

 $A \subseteq FB$ iff $AF \subseteq B$ and $F : A \mapsto S$

A proof of total correctness may be split into two steps.

Proof rules for weak total correctness No recursion (nondeterministic)

Sequential composition

 $A \subseteq PB$ $C \subseteq QD$ $B \subseteq C$ $A \subseteq (P;Q) D$

Strengthening precondition

$$A \subseteq PB$$
$$C \subseteq A$$
$$C \subseteq PB$$

Proof rules for weak total correctness Nondeterministic multirecursion

A componentwise CPO of vectors of relations

R = (R₁,...,R_n) **A** = (A₁,...,A_n) **B** = (B₁,...,B_n) n ≥ 1

Let **R** be the least solution of $X = \Psi X$,

Rule 7.7.2-1there exists a family of preconditions $\{A_i \mid i \ge 0\}$ and a family of postconditions $\{B_i \mid i \ge 0\}$ (1) A $\subseteq U\{A_i \mid i \ge 0\}$ (2) $(\forall i \ge 0) A_i \subseteq (\Psi^i.\emptyset)B_i$ (2) (3) $(\forall i \ge 0) B_i \subseteq B$ (4) A $\subseteq RB$

Proof rules for weak total correctness Nondeterministic single recursion

 $R \subseteq S \times S$, A, $B \subseteq S$ R is the least solution of X = Ψ .X,

Rule 7.7.2-2

there exists a family of preconditions $\{A_i \mid i \ge 0\}$ and a family of postconditions $\{B_i \mid i \ge 0\}$ such that (1) $(\forall i \ge 0) A_i \subseteq (\Psi^i. \emptyset) A_i$ (2) $A \subseteq U\{A_i \mid i \ge 0\}$ (3) $(\forall i \ge 0) B_i \subseteq B$ (4) $A \subseteq RB$

Where is the proof of halting property of R?

By (1), states from A_i initiate executions with exactly i recursive calls.

Proof rules for weak total correctness Simple recursion (nondetermnistic)

If R is the least solution of X = HXT | E then for any A, B \subseteq S

Rule 7.6.2-3

```
there exists a family of preconditions \{A_i \mid i \ge 0\}
and a family of postconditions \{B_i \mid i \ge 0\} such that
(\forall i \ge 0) A_i \subseteq (H^i ET^i) B_i
A \subseteq U\{A_i \mid i \ge 0\}
(\forall i \ge 0) B_i \subseteq B
A \subseteq RB
```

Proof rules for weak total correctness While instruction in a nondeterministic case

- $\mathsf{R} = \textbf{while} (\mathbf{C}, \neg \mathbf{C}) \textbf{ do } \mathsf{P} \textbf{ od}$
- $\mathsf{R} = [\mathsf{C}]\mathsf{P} \mathsf{R} \mid [\neg\mathsf{C}]$
- $\mathsf{R} = ([\mathbf{C}]\mathsf{P})^*[\neg \mathbf{C}]$

Rule 7.6.2-3

```
there exists a family of preconditions \{A_i \mid i \ge 0\}
and a family of postconditions \{B_i \mid i \ge 0\} such that
(\forall i \ge 0) A_i \subseteq ([C]P)^i [\neg C] B_i
A \subseteq U\{A_i \mid i \ge 0\}
(\forall i \ge 0) B_i \subseteq B
```

A ⊆ while (C, ¬C) do P od B

Clean total correctness of while Auxiliary concepts

ograniczona powtarzalność

 $F: S \rightarrow S$ has a limited replicability in a set $N \subseteq S$ if there is no infinite sequence

s, F.s, F.(F.s),... in N.

E.g. x := x-1 has limited replicability in the set of states $N = \{sta \mid sta.x > 0\}$

dobrze ufundowany A partially ordered set (U, >) is said to be a well-founded set, if there is no infinite decreasing sequence in it, i.e., a sequence $u_1 > u_2 > ...$

Lemma 7.7.2-1

If there exists a well founded set (U, <) and a function $K : \mathbb{N} \mapsto U$ such that for any a : N, F.a = !, F.a : N and

K.a > K.(F.b)

then F has limited replicability in N.

A.Blikle - Denotational Engineering; part 8 (11)

Proof rule for (strong) clean total correctness of while **Deterministic case**

For any F : $S \rightarrow S$, any A,B,N $\subseteq S$, and any disjoint C, $\neg C \subseteq S$

(1) A \subseteq N (2) N \subseteq C | \neg C

(3) $\mathsf{N} \cap \neg \mathsf{C} \subseteq \mathsf{B}$

(4) $(N \cap C) \subseteq FN$ (clean total correctness of F)

(5) [C]F has limited replicability in N

 $A \subseteq$ while (C, \neg C) do F od B

No abortion or looping

Clean total correctness of while Simple example

```
pre n, m > 0
x := 1; y := m;
while x < n do; A = {x=1 & y=m, n,m>0}
x := x+1; y := y*m
post y = m^n B = {y = m^n}
```

 $N = \{n,m > 0 \& 0 < x < n \& y = m^x\}$ [x<n] [x:=x+1; y:=y*m] has limitet replicability in N

